Forscher am MBI untersuchen Aspirintabletten
Neue Einsichten in gekoppelte Bewegungen von Elektronen und Atomkernen
Aspirin in Form kleiner Kristalle liefert neue Einsichten in gekoppelte Bewegungen von Elektronen und Atomkernen. Wenn starke ultrakurze Impulse im fernen Infrarot (Terahertzbereich) Molekülschwingungen anregen, oszillieren die Atomkerne viel schneller als nach einer schwachen Anregung. Zusammen mit dem Zerfall der elektronischen Polarisation kehren die Molekülbewegungen allmählich zu ihrer ursprünglichen Schwingungsfrequenz zurück. Eine tiefgreifende theoretische Analyse der von den bewegten Ladungen abgestrahlten Terahertzwellen zeigt eine extrem starke Kopplung zwischen den Bewegungen der Elektronen und der Atomkerne, die für eine große Klasse von Molekülkristallen charakteristisch ist.
Aufgrund seiner physiologischen Wirkung hat Aspirin eine weite Anwendungspalette in verschiedenen Bereichen der Medizin gefunden. Wenn man sich aus physikalischer Sicht ein einzelnes Aspirinmolekül anschaut, kann man zwei unterschiedliche Bewegungstypen unterscheiden: (i) Molekülschwingungen sind oszillierende Bewegungen der Atomkerne in einem weiten Frequenzbereich, z.B. die behinderte Drehung der Methylgruppe (Film 1) mit einer Frequenz von 6 Terahertz (THz) (1 THz = 1.000.000.000.000 Oszillationsperioden pro Sekunde) und (ii) oszillierende Bewegungen der Elektronen innerhalb des Moleküls mit etwa 1000 THz (Film 2), die man etwa mit ultraviolettem Licht anregen kann. Während die beiden unterschiedlichen Bewegungen in einem isolierten Aspirinmolekül nur schwach miteinander koppeln, entwickelt sich eine sehr starke gegenseitige elektrische Wechselwirkung in der dichten Packung von Molekülen in Kristalliten, aus denen die Aspirintabletten aus der Apotheke bestehen. Als Ergebnis dieser starken Kopplung wird die Schwingungsfrequenz sogenannter Weicher Moden (engl. soft mode) drastisch reduziert (Film 3). Das komplizierte Kopplungsschema und die daraus resultierende Moleküldynamik sind wichtig um zu verstehen, wie Aspirin auf externe Stimuli antwortet. Bislang weiß man darüber fast nichts.
In der neuesten Ausgabe der amerikanischen Fachzeitschrift Physical Review Letters kombinierten Forscher aus dem Max-Born-Institut in Berlin und der Universität Luxemburg modernste Methoden der experimentellen und theoretischen Physik um grundlegende Eigenschaften solcher soft modes aufzuklären. In den Experimenten schickten die Wissenschaftler zwei phasengekoppelte Terahertzimpulse auf eine 700-μm dicke Tablette aus polykristallinem Aspirin. Das von den sich bewegenden Atomen abgestrahlte elektrische Feld erlaubt es, die soft mode-Schwingungen direkt in Echtzeit zu beobachten. Die sogenannte zweidimensionale Terahertzspektroskopie zeigte eine überraschend starke nichtlineare Antwort der soft mode in Aspirinkristallen. Dabei beobachtet man eine drastische Verschiebung der soft mode zu höheren Frequenzen (Fig. 1). Die experimentell beobachtete Antwort zeigte einen nicht-instantanen Charakter auf der Pikosekunden-Zeitskala aufgrund der erzeugten elektrischen Polarisation der Aspirinkristalle. Während des Zerfalls dieser Polarisation kehrt die Frequenz der soft mode allmählich wieder zu ihrem Wert vor der Anregung zurück.
Die theoretische Analyse der Forscher zeigt, dass die großen elektrischen Polarisationen im Ensemble der Aspirinmoleküle der soft mode einen Hybrid-Charakter verleihen. Durch elektrische Dipol-Dipol-Wechselwirkungen werden Elektron- und Atomkern-Bewegungen stark korreliert. Vor der Anregung bestimmt diese Korrelation die Frequenz der soft mode in einem Aspirinkristall. Eine intensive THz-Anregung bricht diese Korrelationen auf, was zu einer Blauverschiebung der Schwingungsfrequenz führt. Der vergleichsweise langsame Zerfall (Dekohärenz) der Polarisation ruft eine nicht-instantane Antwort der Aspirinkristalle hervor. Das hier beobachtete Szenario ist für eine große Klasse von molekularen Materialien wichtig, insbesondere für solche in Anwendungen in der Ferroelektrizität.
Originalpublikation: Physical Review Letters 119, 097404 (2017)
Strong Local-Field Enhancement of the Nonlinear Soft-Mode Response in a Molecular Crystal
Giulia Folpini, Klaus Reimann, Michael Woerner, Thomas Elsaesser, Johannes Hoja, and Alexandre Tkatchenko
Kontakt
Dr. Michael Wörner
Tel. 030 6392 1470
Giulia Folpini
Tel. 030 6392 1474
Prof. Dr. Klaus Reimann
Tel. 030 6392 1476
Prof. Dr. Thomas Elsässer
Tel. 030 6392 1400