• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • CHIC Logo
  • Aktuelles
    • News / Termine
    • Newsletter
    • CHIC auf LinkedIn
  • Firmenverzeichnis
  • Arbeitswelten
  • Gesundheits­netzwerk
  • Campus Charlottenburg
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Aktuelles

  • News / Termine
  • Newsletter
  • CHIC auf LinkedIn
  • Charlottenburg
  • Aktuelles
27. Juli 2021

HZB-Forschende liefern neue Erkenntnisse zu bleifreien Perowskit-Solarzellen

Wie Fluor-Additive die Qualität verbessern

Perowskit-Schicht, HZB Adlershof Berlin, © M. Künsting/HZB
Die Beigabe von Fluor-Additiven steigert die Qualität der Perowskit-Schicht. Analysen an BESSY II zeigen nun, warum. © M. Künsting/HZB

Zinnhalogenid-Perowskite gelten aktuell als beste Alternative zu den bleihaltigen Analogen, sind jedoch im Vergleich zu diesen noch deutlich weniger effizient und stabil. Nun hat ein Team um Prof. Antonio Abate aus dem HZB die chemischen Prozesse in der Perowskit-Vorläuferlösung und deren Fluoridchemie eingehend analysiert. Durch eine raffinierte Kombination von Messmethoden an BESSY II mit Kernspinresonanz konnten sie zeigen, dass Fluorid die Oxidation von Zinn verhindert, was zu einer homogeneren Filmbildung mit weniger Defekten führt und die Qualität der Halbleiterschicht erhöht.

Blei-Halogenid-Perowskit-Solarzellen versprechen sehr hohe Wirkungsgrade zu geringen Herstellungskosten. Die Toxizität von Blei wirft jedoch ernsthafte Umweltprobleme auf. Die Suche nach bleifreien Alternativen ist in vollem Gang. Zinn gilt derzeit als die beste Wahl, neigt aber zur Oxidation und unkontrollierten Kristallisation, was die Fertigung, Leistung und Stabilität der Solarzellen einschränkt.

Zinnfluorid hilft
Eine der gängigsten Strategien, um Zinn-basierte Perowskit-Schichten guter Qualität zu erhalten, besteht in der Verwendung von Zinnfluorid (SnF2) als Additiv im lösungsbasierten Herstellungsprozess. Viele Studien zeigen, dass SnF2 die optoelektronischen und morphologischen Eigenschaften der Perowskit-Schichten verbessert. Warum dieses Additiv jedoch diese Wirkung hat, wurde bislang nicht ausreichend beleuchtet.

Chemische Rolle aufgeklärt
Nun hat ein Team um Prof. Antonio Abate erstmals die chemische Rolle von SnF2 in der Perowskit-Vorläuferlösung aufgeklärt, die für diese Verbesserungen verantwortlich ist. Der Schlüssel liegt in den chemischen Eigenschaften der Fluoridanionen. Zinn oxidiert leicht von Sn(II) zu Sn(IV) und erzeugt in dieser Form Defekte in der Halbleiterschicht. Ergebnisse der Kernspinresonanz-Analyse zeigten nun, dass die Fluoridanionen aus SnF2 eine starke Affinität zu Sn(IV) aufweisen und die Verbindung SnF4 bilden. Mit Photoelektronenspektroskopie an BESSY II konnte das Team nachweisen, dass SnF4 eine geringere Tendenz zeigt, in die Perowskit-Struktur eingelagert zu werden. Dadurch wird der Sn(IV)-Gehalt in der Dünnschicht deutlich reduziert. Schließlich zeigten Messungen der Röntgen-Kleinwinkelstreuung an BESSY II, dass das Fluorid den Keimbildungsprozess in der Vorläuferlösung positiv beeinflusst und so die Kristallisation verbessert.

Homogeneres Ergebnis
„Vereinfacht gesagt binden Fluoridanionen oxidiertes Sn(IV) in der Lösung, als SnF4. Die verminderte Bindungsbereitschaft dieses Materials an perowskitähnliche Spezies verhindert seinen Einschluss in den Perowskitfilm“, sagt Jorge Pascual, ein Postdoc aus Abates Gruppe, der an Zinnhalogenid-Perowskiten forscht. „Darüber hinaus verbessert Fluorid die Kolloidstabilität von Zinnhalogenid-Perowskit-Vorläuferlösungen, wobei die Vorläufer-Untereinheiten eine gleichmäßiger verteilte Vorordnung bilden, was zu einem homogeneren Kristallwachstum führt“, erläutert Marion Flatken, die die Untersuchungen als Teil ihrer Promotion durchführte.

Diese Ergebnisse kommen zur richtigen Zeit. Auf Basis dieser Studie könnten sich noch andere  Additive finden lassen, mit denen die Eigenschaften von bleifreien Perowskit-Solarzellen gezielt weiter verbessert werden.

 

Kontakt:

Helmholtz-Zentrum Berlin für Materialien und Energie
Abteilung Neuartige Materialien und Grenzflächen für photovoltaische Solarzellen

Marion Flatken
marion.flatken(at)helmholtz-berlin.de

Jorge Pascual Mielgo
jorge.mielgo(at)helmholtz-berlin.de

 

Pressemitteilung des Helmholtz Zentrum Berlin vom 26.07.2021

Mikrosysteme / Materialien Außeruniversitäre Forschung Erneuerbare Energien

Meldungen dazu

  • Schema der Tests

    Perowskit-Solarzellen im Belastungstest

    Forschungsteam macht thermische Spannungen als Schlüssel zur Langzeitstabilität aus
  • Modell der Perowskit-Schichten © G. Li/HZB

    Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein

    HZB-Team erreicht mit verbesserter Materialstruktur Wirkungsgrade von bis zu 24,6% im Belastungstest
  • Schaubild: ARPES-Daten für verschiedene Photonenenergien © HZB

    Team an BESSY II widerlegt Annahmen über Perowskit-Solarzellen

    Erkenntnisse ermöglichen bessere Ansätze zur gezielten Optimierung dieser Materialklasse
  • Tandemsolarzelle HySPRINT Lab © Amran Al-Ashouri/HZB

    Vom Labor in die Fabrik: Tandemsolarzelle bereit für die Massenproduktion

    Q CELLS und Helmholtz-Zentrum Berlin erreichen Rekordwirkungsgrad von 28,7% für 2-Terminal-Perowskit-Silizium-Tandemsolarzelle
  • Tandem-Solarzelle © Silvia Mariotti / HZB

    Gute Aussichten für die Kommer­zia­li­sierung von Perowskit-Tandem-Solarzellen

    Forschungsteams von HZB und ISFH haben PERC/POLO-Silizium-Zellen, die am Markt weit verbreitet sind, erstmals mit Perowskit-Zellen kombiniert und erwarten Wirkungsgrade von bis zu 29,5%
  • Wortwolke Perowskit-Forschung © HZB

    Ein Wiki für die Perowskit-Solarzellenforschung

    Ein internationales Expertenteam hat eine Open-Source-Datenbank konzipiert, um Erkenntnisse zu Perowskit-Halbleitern systematisch zu erfassen
  • Weltrekordzelle HZB. © Amran Al-Ashouri /HZB

    Erneuter Weltrekord für HZB-Perowskit-Silizium-Tandemsolarzellen

    Fast 30 % Wirkungsgrad bei Tandemsolarzellen der nächsten Generation
  • Orbitale in MAPI-Perowskit © HZB

    Rolle der Wasserstoffbrückenbindungen in Perowskit-Solarzellen beleuchtet

    Ergebnisse der Forschung liefern wichtige Hinweise für die Perowskit-Materialforschung für Solarzellen
  • Kristallstruktur © HZB

    Neue Einblicke in die Struktur von organisch-anorganischen Hybrid-Perowskiten

    Team am HZB konnte Strukturdaten von Photovoltaik-Materialien mit einem neuartigen Modell analysieren
  • Schema Beschichtung mit Materialtinte © Jinzhao Li / HZB

    Die perfekte Mischung für effiziente Perowskit-Solarzellen

    HZB-Team optimiert die Zusammensetzung von Materialtinten für die einfache und kostengünstige Herstellung von Solarzellen
  • Tandemsolarzelle © Eike Köhnen/HZB

    Perowskit/Silizium-Tandemsolarzellen an der Schwelle zu 30% Wirkungsgrad

    HZB-Team konnte gezielt den Ladungsträgertransport verbessern und eine bessere Stabilität der Solarzellen erreichen
  • Proben HySPRINT-Labor © H. Näsström/HZB

    Materialien für Solarenergie gesucht

    HZB-Forscherteam kartiert Cäsium-basierte anorganische Halogenid-Perowskite
  • Strukturmodell von hochporösem a-Si:H © Eike Gericke/HZB

    Ordnung in der Unordnung

    Team am HZB hat Dichtefluktuationen in amorphem Silizium entdeckt
  • Tandemsolarzelle © HZB/Eike Köhnen

    Helmholtz-Zentrum errichtet Fertigungsanlagen für Tandem-Solarzellen

    Die effizienten Silizium-Perowskit-Zellen sollen künftig im industriellen Maßstab produziert werden

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social Media
  • Kontakt
  • Newsletter
Zukunftsort Charlottenburg Logo