• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • CHIC Logo
  • Aktuelles
    • News / Termine
    • Newsletter
    • CHIC auf LinkedIn
  • Firmenverzeichnis
  • Arbeitswelten
  • Gesundheits­netzwerk
  • Campus Charlottenburg
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Aktuelles

  • News / Termine
  • Newsletter
  • CHIC auf LinkedIn
  • Charlottenburg
  • Aktuelles
22. Februar 2021

Die perfekte Mischung für effiziente Perowskit-Solarzellen

HZB-Team optimiert die Zusammensetzung von Materialtinten für die einfache und kostengünstige Herstellung von Solarzellen

Schema Beschichtung mit Materialtinte © Jinzhao Li / HZB
Die „Tinte“ aus Perowskit-Vorstufe, Lösungsmittel und Zusatzstoff kommt aus einer schlitzförmigen Düse und beschichtet das darunter entlangfahrende Glassubstrat. © Jinzhao Li / HZB

Solarzellen, die das Sonnenlicht so effizient wie Silizium in elektrische Energie umwandeln, sich dabei aber einfach und aus kostengünstigen Materialien herstellen lassen – für Materialforscher ist das ein langgehegter Traum. Dem sind Wissenschaftler des Helmholtz-Zentrums Berlin nun ein Stück nähergekommen. Sie haben ein Verfahren verbessert, mit dem sich günstige Perowskit-Schichten einfach aus Lösungen auf Trägermaterien aufbringen lassen. Dabei haben sie nicht nur entdeckt, welch entscheidende Rolle eines der verwendeten Lösungsmittel spielt, sondern auch die Lagerfähigkeit der Materialtinten genauer unter die Lupe genommen.

Noch machen Solarzellen aus kristallinem Silizium den Löwenanteil auf Dächern und in Solarparks aus. Doch andere Technologien haben sich längst in Stellung gebracht – zum Beispiel solche, bei denen extrem dünnen Schichten auf einem Trägermaterial das Sonnenlicht in elektrische Energie umwandeln. In diese Gruppe gehören auch die Perowskit-Solarzellen, die Prof. Eva Unger und ihr Team am Helmholtz-Zentrum Berlin (HZB) erforscht. „Das sind die bisher besten Solarzellen, die sich aus einer Materialtinte herstellen lassen“, erklärt die Forscherin. „Und mittlerweile reichen ihre Wirkungsgrade an Zellen aus kristallinem Silizium heran.“

Bisher wurden viele Methoden entwickelt, um kleine Testzellen im Labor herzustellen, dort zu untersuchen und zu optimieren. Bis zur industriellen Produktion ist es aber noch ein weiter Weg. Denn Unger weiß aus eigener Erfahrung: „Leider lassen sich Verfahren, die für kleinflächige Herstellung optimiert sind, nicht immer skalieren.“ Mit anderen Worten: Nicht alles, was im Labor perfekt funktioniert, muss auch in der Fabrik wirtschaftlich funktionieren. „Deshalb gehen wir den nächsten Schritt und entwickeln skalierbare Methoden. Das heißt, unser Team konzentriert sich auf Beschichtungsprozesse für größere Flächen.“ Am Hybrid Silicon Perovskite Research, Integration & Novel Technologies (HySPRINT) Innovation Lab, einer Kooperationsplattform zwischen dem HZB und der Industrie, setzen sie dafür von Anfang an auf Verfahren, die ihre Relevanz in der Industrie bereits unter Beweis gestellt haben.
 

Auf die Dosis kommt es an

„Wir haben hier mit Schlitzdüsenbeschichtung experimentiert“, erzählt sie. Dabei fließt die „Tinte“, wie die dünnflüssige Lösung aus Perowskit-Vorstufe, Lösungsmittel und Zusatzstoff im Fachkreis genannt wird, aus einer schlitzförmigen Düse heraus und fällt wie ein Vorhang auf das darunter entlangfahrende Glassubstrat der späteren Solarzelle. Dann setzt die Kristallbildung ein. Es wächst eine ultradünne, halbleitende Perowskit-Struktur, die der Materialgruppe ihren Namen und der Solarzelle ihre Fähigkeiten verleiht. Für diesen Prozess, das haben Unger und ihr Doktorand Jinzhao Li nun herausgefunden, ist die genaue Menge einer Substanz namens DMSO ausschlaggebend. Das steht für Dimethylsulfoxid und ist ein organisches Lösungsmittel. Unger nutzt es als Zusatzstoff, denn in der Tinte hat es eine erstaunliche Wirkung. „DMSO induziert Kristallisationskeime für das Perowskit“, sagt die Forscherin. Kristallisationskeime sind meist winzig kleine Körnchen, die einem Kristall als Starthilfe dienen und sein Wachstum fördern. „Mit unseren Röntgenbeugungsexperimenten am BESSY II haben wir einen ganz großen Unterschied zwischen Tinten mit und ohne DMSO-Zusatz gesehen“, erzählt die Physikochemikerin.

Allerdings, und das hat ihr Team in vielen Versuchen herausgefunden, spielt hier die Dosis eine entscheidende Rolle. Ein Mehr an DMSO begünstigt das Kristallwachstum – bis zu einer gewissen Grenze. Wird diese überschritten, treten andere Prozesse in den Vordergrund und die so entstehende Mikrostruktur schmälert die Leistung der Solarzellen. „Das ist wie beim Würzen in der Küche“, sagt Unger. „Gibt man zu wenig Salz in die Suppe, dann wird sie fade. Gibt man zu viel dazu, dann schmeckt sie auch nicht gut. Man braucht also genau die richtige Menge, damit es perfekt wird.“

Neben der optimalen Zusammensetzung hat das HZB-Team auch die Alterungsprozesse und damit die Lagerfähigkeit der Tinten eingehend untersucht. „Das ist ein Aspekt, der bisher weniger beachtet wurde“, erklärt Unger. „Das Alter einer Perowskit-Vorläufertinte kann die Bauelementleistung beeinflussen. Dies ist ein wichtiger Faktor, der bei der Entwicklung von Tinten und Prozessen berücksichtigt werden muss.“
 

Publikation

20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks
Jinzhao Li, Janardan Dagar, Oleksandra Shargaieva, Marion A. Flatken, Hans Köbler, Markus Fenske, Christof Schultz, Bert Stegemann, Justus Just, Daniel M. Többens, Antonio Abate, Rahim Munir, and Eva Unger
Adv. Energy Materials (2021). DOI: 10.1002/aenm.202003460
 

Kontakt

Helmholtz-Zentrum Berlin für Materialien und Energie

Dr. Eva Unger
Nachwuchsgruppe Hybride Materialien Formierung und Skalierung
Tel.: +49 30 8062-41373
E-Mail: eva.unger(at)helmholtz-berlin.de

Pressestelle:
Dr. Antonia Rötger
Tel.: +49 30 8062-43733
E-Mail: antonia.roetger(at)helmholtz-berlin.de

www.helmholtz-berlin.de

 

Pressemitteilung HZB vom 22.02.2021

Außeruniversitäre Forschung Grand Challenges Erneuerbare Energien Mikrosysteme / Materialien

Meldungen dazu

  • Schema der Tests

    Perowskit-Solarzellen im Belastungstest

    Forschungsteam macht thermische Spannungen als Schlüssel zur Langzeitstabilität aus
  • Aufnahme der Perowskit-Schicht unter Rasterelektronenmikroskop © HZB

    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile

    Untersuchungen an BESSY II belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms sogar positiv beeinflusst
  • Experimentierhalle von BESSY II © HZB/Kevin Fuchs

    HZB erhält Fördermittel, um Innovationen rascher nutzbar zu machen

    Helmholtz-Gemeinschaft fördert Innovations­plattformen für Beschleuniger­technologie und Photovoltaik­forschung mit 4,2 Mio. Euro
  • Beschichtungen von Dünnschicht-Solarzellen © HZB

    Solarzellen aus flüssigen Tinten im Außeneinsatz getestet

    HZB-Team optimiert Metallhalogenid-Perowskite für Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
  • Modell der Perowskit-Schichten © G. Li/HZB

    Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein

    HZB-Team erreicht mit verbesserter Materialstruktur Wirkungsgrade von bis zu 24,6% im Belastungstest
  • Clusteranlage HZB,© B. Stannowski / HZB

    HZB kooperiert mit Solarmodulhersteller Meyer Burger

    Perowskit/Silizium-Tandemzellen auf dem Weg in die Massenproduktion
  • Prof. Dr. Eva Unger © HU Berlin

    Ist die Welt noch zu retten?

    Prof. Dr. Eva Unger im „Köpfe der Nachhaltigkeit“-Interview
  • Schaubild: ARPES-Daten für verschiedene Photonenenergien © HZB

    Team an BESSY II widerlegt Annahmen über Perowskit-Solarzellen

    Erkenntnisse ermöglichen bessere Ansätze zur gezielten Optimierung dieser Materialklasse
  • Tandemsolarzelle HySPRINT Lab © Amran Al-Ashouri/HZB

    Vom Labor in die Fabrik: Tandemsolarzelle bereit für die Massenproduktion

    Q CELLS und Helmholtz-Zentrum Berlin erreichen Rekordwirkungsgrad von 28,7% für 2-Terminal-Perowskit-Silizium-Tandemsolarzelle
  • Tandem-Solarzelle © Silvia Mariotti / HZB

    Gute Aussichten für die Kommer­zia­li­sierung von Perowskit-Tandem-Solarzellen

    Forschungsteams von HZB und ISFH haben PERC/POLO-Silizium-Zellen, die am Markt weit verbreitet sind, erstmals mit Perowskit-Zellen kombiniert und erwarten Wirkungsgrade von bis zu 29,5%
  • Eva Unger © K. Kolatzki / HZB

    Humboldt-Universität zu Berlin beruft Eva Unger

    Eva Unger forscht am Helmholtz-Zentrum Berlin an Perowskit-Halbleitern für Solarzellen und ist nun auch Professorin an der HU Berlin
  • Wortwolke Perowskit-Forschung © HZB

    Ein Wiki für die Perowskit-Solarzellenforschung

    Ein internationales Expertenteam hat eine Open-Source-Datenbank konzipiert, um Erkenntnisse zu Perowskit-Halbleitern systematisch zu erfassen
  • gedruckte Spektrometer © IRIS Adlershof

    Drucken eines elektronischen Regenbogens

    Kombination aus Farbdruck und chemischem Tuning ermöglicht gedruckte Spektrometer
  • Weltrekordzelle HZB. © Amran Al-Ashouri /HZB

    Erneuter Weltrekord für HZB-Perowskit-Silizium-Tandemsolarzellen

    Fast 30 % Wirkungsgrad bei Tandemsolarzellen der nächsten Generation
  • Perowskit-Schicht, HZB Adlershof Berlin, © M. Künsting/HZB

    HZB-Forschende liefern neue Erkenntnisse zu bleifreien Perowskit-Solarzellen

    Wie Fluor-Additive die Qualität verbessern
  • Messgerät LuQY Pro © QYB Quantum Yield Berlin

    Mit LuQY Pro schneller zu effizienteren Solarzellen und LEDs

    HZB-Ausgründung QYB Quantum Yield Berlin bringt ein Messgerät zur Optimierung von optoelektronischen Bauelementen auf den Markt
  • Kristallstruktur © HZB

    Neue Einblicke in die Struktur von organisch-anorganischen Hybrid-Perowskiten

    Team am HZB konnte Strukturdaten von Photovoltaik-Materialien mit einem neuartigen Modell analysieren
  • Proben HySPRINT-Labor © H. Näsström/HZB

    Materialien für Solarenergie gesucht

    HZB-Forscherteam kartiert Cäsium-basierte anorganische Halogenid-Perowskite
  • Druckprozess © Claudia Rothkirch/HU Berlin

    Nach Solarzellen nun auch Leuchtdioden aus dem Drucker

    HZB-HU-Team gelingt erstmals Tintenstrahldruck von Perowskit-LED
  • 3D-Bild der Zellarchitektur © Burcu Kepsutlu/HZB

    „Die Zelle sieht aus wie nach einem Marathonlauf“

    Röntgenmikroskopie an BESSY II zeigt, wie Nanopartikel Zellen verändern können
  • HySPRINT-Logo. Herstellung und Foto: Humboldt-Universität zu Berlin/List-Kratochvil

    Solarzellen und organische LEDs drucken

    Humboldt-Universität zu Berlin und Helmholtz-Zentrum Berlin gründen gemeinsames Labor und Forschergruppe „Generative Fertigungsprozesse für Hybride Bauelemente“

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social Media
  • Kontakt
  • Newsletter
Zukunftsort Charlottenburg Logo