• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • CHIC Logo
  • Aktuelles
    • News / Termine
    • Newsletter
    • CHIC auf LinkedIn
  • Firmenverzeichnis
  • Arbeitswelten
  • Gesundheits­netzwerk
  • Campus Charlottenburg
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Aktuelles

  • News / Termine
  • Newsletter
  • CHIC auf LinkedIn
  • Charlottenburg
  • Aktuelles
06. Dezember 2021

Grüne Informationstechnologien: Supraleitung trifft Spintronik

Ein internationales Team hat ein Materialsystem entworfen, das sich für supraleitende spintronische Anwendungen mit sehr geringem Energiebedarf eignet

Materialsystem mit Josephson-Kopplung © Nature Materials 2021
In diesem Materialsystem wurde die langreichweitige Josephson-Kopplung nachgewiesen. Supraleitende YBa₂Cu₃O₇-Regionen (gelb) sind durch einen halbmetallischen La₂/₃Sr₁/₃MnO₃-Ferromagneten (grün) getrennt. © Nature Materials 2021: 10.1038/s41563-021-01162-5

Ein internationales Team hat eine Kopplung zwischen zwei supraleitenden Regionen nachgewiesen, die durch ein ferromagnetisches Material von einem Mikrometer Breite getrennt sind. Dieser makroskopische Quanteneffekt ist als Josephson-Effekt bekannt und erzeugt einen Strom aus supraleitenden Cooper-Paaren innerhalb der ferromagnetischen Region. Messungen an BESSY II zeigten, dass der Spin der Cooper-Elektronen gleich ist. Die Ergebnisse weisen den Weg für supraleitende spintronische Anwendungen mit sehr geringem Energiebedarf, bei denen spinpolarisierte Ströme durch Quantenkohärenz geschützt sind.

Langreichweitiger Quanteneffekt

Wenn supraleitende Bereiche durch einen Streifen nicht-supraleitenden Materials getrennt sind, kann ein besonderer Quanteneffekt auftreten, der beide Bereiche koppelt: Der Josephson-Effekt. Handelt es sich bei dem Material um einen halbmetallischen Ferromagneten, ergeben sich neuartige Implikationen für spintronische Anwendungen.

Ein internationales Team hat nun erstmals ein Materialsystem entworfen, das einen ungewöhnlich weitreichenden Josephson-Effekt aufweist: Hier sind Bereiche aus supraleitendem YBa2Cu3O7 durch einen Bereich aus halbmetallischem, ferromagnetischem Manganit (La2/3Sr1/3MnO3) von einem Mikrometer Breite getrennt.

Mit Hilfe von Magneto-Transportmessungen konnten die Forscher*innen nachweisen, dass ein supraleitender Strom durch das Manganit zirkuliert – hervorgerufen durch die Kopplung zwischen den beiden supraleitenden Bereichen als Manifestation eines Josephson-Effekts mit makroskopisch großer Reichweite.

Seltene Triplett-Supraleitung

Darüber hinaus erforschten sie eine weitere interessante Eigenschaft mit tiefgreifenden Konsequenzen für spintronische Anwendungen. In Supraleitern paaren sich Elektronen zu sogenannten Cooper-Paaren. In der überwiegenden Mehrheit der supraleitenden Materialien bestehen diese Paare aus Elektronen mit entgegengesetztem Spin, um das magnetische Austauschfeld zu minimieren, das die Supraleitung schwächt. Im hier verwendeten ferromagnetischen Material kann jedoch nur ein Elektron mit einem Spin zirkulieren. Die Tatsache, dass in diesem Material ein Suprastrom nachgewiesen wurde, bedeutet, dass die Cooper-Paare dieses Suprastroms aus Elektronen mit dem gleichen Spin bestehen müssen. Diese so genannte "Triplett"-Supraleitung ist extrem selten.

Magnetische Domänen an BESSY II kartiert

„An der XMCD-PEEM-Station bei BESSY II haben wir die magnetischen Domänen innerhalb des Manganit-Streifens kartiert und gemessen. Wir haben weite Bereiche beobachtet, die homogen magnetisiert sind und die supraleitenden Bereiche miteinander verbinden. In diesen können sich Triplett-Spinpaare frei ausbreiten“, erklärt Dr. Sergio Valencia Molina, HZB-Physiker, der die Messungen an BESSY II betreut hat.

Stabilität durch Quantenkohärenz

Supraleitende Ströme fließen ohne Widerstand, was sie für Anwendungen mit geringem Stromverbrauch sehr interessant macht. Im vorliegenden Fall besteht dieser Strom aus Elektronen mit gleichen Spins. Solche spinpolarisierten Ströme könnten in neuartigen supraleitenden spintronischen Anwendungen für den Transport über große Entfernungen und das Lesen/Schreiben von Informationen verwendet werden. Die makroskopische Quantenkohärenz des Josephson-Effekts sorgt dabei für Stabilität.

Ein neues Bauelement, das aus supraleitenden und ferromagnetischen Komponenten besteht, würde daher Möglichkeiten für die supraleitende Spintronik eröffnen und neue Perspektiven für das Quantencomputing aufzeigen.

Kooperationspartner:

An dieser internationalen Zusammenarbeit (Spanien, Frankreich, USA, Russland und Deutschland) unter der Leitung von Prof. Jacobo Santamaria von der Complutense Universität Madrid (Spanien) und Javier Villegas von der 2Unité Mixte de Physique CNRS/THALES (Frankreich) war die Abteilung Spin und Topologie in Quantenmaterialien am HZB beteiligt.

Finanzierung: To2Dox, ERA-NET, EU Horizon 2020

Publikation:

Nature Materials (2021): Extremely long range, high-temperature Josephson coupling across a half metallic ferromagnet
D. Sanchez-Manzano, S. Mesoraca, F. Cuellar, M. Cabero, V. Rouco, G. Orfila, X. Palermo, A. Balan, L. Marcano, A. Sander, M. Rocci, J. García-Barriocanal, F. Gallego, J. Tornos, A. Rivera, F. Mompean, M. García-Hernández, J. M. González-Calbet, C. León, S. Valencia, C. Feuillet-Palma, N. Bergeal, A.I. Buzdin, J. Lesueur, Javier E. Villegas y J. Santamaría.
DOI: 10.1038/s41563-021-01162-5
 

Kontakt:

Helmholtz-Zentrum Berlin für Materialien und Energie
Abteilung Spin und Topologie in Quantenmaterialien
Dr. Sergio Valencia Molina
Tel.: +49 30 8062-15619
E-Mail: sergio.valencia(at)helmholtz-berlin.de

Pressestelle:
Dr. Antonia Rötger
Tel.: +49 30 8062-43733
E-Mail: antonia.roetger(at)helmholtz-berlin.de

 

Pressemitteilung HZB vom 2.12.2021

Außeruniversitäre Forschung Mikrosysteme / Materialien

Meldungen dazu

  • Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum des Materials

    Mikrostrukturen in Blütenform bieten erstaunliches Potenzial für vielfältige Anwendungen
  • Spintexturen auf Proben aus ferromagnetischem Material auf supraleitender YBCO-Insel © HZB

    Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur

    HZB-Team hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen
  • Grüne Spintronik: Mit Spannung Super­ferro­magnetismus erzeugen

    Materialforscher beobachten neues Phänomen in Eisen-Nanokörnern
  • Bild: HZB

    Neues Materialsystem ermöglicht lokale magnetische Monopole

    Kandidat für künftige energieeffiziente Datenspeicher
  • Die Skizze zeigt den Aufbau der beiden Metalloxidschichten. Die interessanten neuen Eigenschaften zeigen sich genau an der Grenzfläche. Bild: M.Bibes

    Sandwiches aus Metalloxiden

    BESSY II: Wie sich Eigenschaften der Grenzflächen manipulieren lassen
  • Ferromagnetischer FeRh-Film auf ferroelastischem BTO. Grafik: HZB

    Neue Optionen für Spintronik-Bauteile

    Am HZB gelingt Umschalten zwischen magnetischen Zuständen mit weniger Energieaufwand
  • Magnetische Schichten / Grafik: HZB

    Einblick ins Innere magnetischer Schichten

    BESSY-Forscher gewinnen Erkenntnisse für das Design spintronischer Bauelemente

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social Media
  • Kontakt
  • Newsletter
Zukunftsort Charlottenburg Logo