• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • CHIC Logo
  • Aktuelles
    • News / Termine
    • Newsletter
    • CHIC auf LinkedIn
  • Firmenverzeichnis
  • Arbeitswelten
  • Gesundheits­netzwerk
  • Campus Charlottenburg
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Aktuelles

  • News / Termine
  • Newsletter
  • CHIC auf LinkedIn
  • Charlottenburg
  • Aktuelles
17. Februar 2015

Einblick ins Innere magnetischer Schichten

BESSY-Forscher gewinnen Erkenntnisse für das Design spintronischer Bauelemente

Magnetische Schichten / Grafik: HZB
Die LFO-Schicht weist normalerweise eine antiferromagnetische Ordnung auf (AFM) und besitzt keine ferromagnetischen Domänen. Doch die ferromagnetischen Domänen (weiße Pfeile) der LSMO-Schichten bewirken, dass an den Grenzflächen in der LFO-Schicht ferromagnetische Domänen ausbilden, die antiparallel zu den angrenzenden Domänen der LSMO-Schicht ausgerichtet sind. Grafik: HZB

Forscherteams aus Paris, Madrid und Berlin haben erstmals beobachtet, wie sich die magnetischen Domänen an den Grenzflächen spintronischer Bauelemente gegenseitig beeinflussen. Durch Messungen an BESSY II konnten sie nachweisen, dass sich zwischen den äußeren ferromagnetischen Schichten und der innenliegenden antiferromagnetischen Isolatorschicht so genannte „Spin-Filter“ bilden, die den Tunnelmagnetwiderstand (TMR) beeinflussen. Damit haben sie das Verständnis von relevanten Prozessen in zukünftigen TMR-Datenspeichern und anderen spintronischen Bauelementen erheblich erweitert. Ihre Ergebnisse sind nun in Nature Communications (DOI: 10.1038/ncomms7306) veröffentlicht.

In jeder Festplatte und jedem Schreib-Lesekopf stecken heute magnetische Schichtstrukturen: Dies sind Sandwiches aus komplexen Heterostrukturen, deren einzelne Schichten nur wenige Nanometer dick sind. Entscheidend für ihre Funktion ist dabei ein quantenphysikalischer Effekt, der Tunnelmagnetwiderstand (TMR). Er tritt auf, wenn zwei ferromagnetische Schichten voneinander durch eine isolierende Schicht von wenigen Atomlagen Dicke getrennt sind, wie zwei Brotscheiben durch eine Scheibe Käse. Solange die Magnetisierung in den beiden „Brotscheiben“ parallel ist, dürfen Elektronen durch den „Käse“ tunneln, so dass der Widerstand niedrig ist. Ändert sich jedoch in einer der Schichten die Magnetisierung, dürfen die Elektronen nicht mehr durch die mittlere Schicht tunneln und der Widerstand ist hoch. So lässt sich durch magnetischen Einfluss auf eine der Außenschichten der elektrische Widerstand präzise steuern und mit den binären Werten „Null“ und „Eins“ verbinden, mit denen sich rechnen lässt.

Neue Effekte beobachtet

Nun haben Teams aus Frankreich, Spanien und dem HZB entdeckt, dass in Sandwich-Strukturen aus verschiedenen Übergangsmetalloxiden an den Grenzflächen Effekte auftreten, die den TMR-Widerstand stark beeinflussen. Dies hatte das französische Team um Manuel Bibes und Agnès Barthelemy, Unité de Physique, CNRS/Thales, Palaiseau, in Zusammenarbeit mit dem Team um Jacobo Santamaria in Madrid, zunächst durch Messungen der Transporteigenschaften beobachtet. Sie untersuchten dafür ein Schichtsystem aus zwei LSMO-Schichten (La0.7Sr0.3MnO3), die durch eine sehr dünne LFO-Schicht (LaFeO3) getrennt war. Dabei waren die LSMO-Schichten ferromagnetisch (Mangan-Atome richten ihre magnetischen Momente in Domänen parallel zueinander aus), die LFO-Isolatorschicht dagegen antiferromagnetisch (Eisenatome ordnen hier ihre magnetische Momente antiparallel zueinander).

Neue magnetische Ordnung an den Grenzflächen

Messungen mit der Messkammer ALICE und am XPEEM-Instrument der UE49-Beamline von BESSY II haben deutlich gemacht, was an den Grenzschichten zwischen den ferromagnetischen Schichten und der antiferromagnetischen Innenschicht geschieht. Mit dem XPEEM-Instrument konnten sie entschlüsseln, wie sich die magnetischen Elemente Mangan und Eisen an den Grenzschichten jeweils ausrichteten. „Wir haben gesehen, dass an den Grenzen neue magnetische Phasen entstehen, die wie Spin-Filter wirken“, erklärt Sergio Valencia Molina, der das HZB-Team leitet. „Vereinfacht gesagt: Die Eisen-Atome der Isolatorschicht werden an der Grenzschicht durch die Manganatome beeinflusst und richten ihre magnetischen Momente nun antiparallel zu denen der Mangan-Atome aus. Dadurch entsteht direkt an der Grenzschicht auch in der Isolatorschicht eine ferromagnetische Ordnung. Damit haben wir erstmals experimentell nachgewiesen, dass sich auch in nicht-ferromagnetischen Barriereschichten ferromagnetische Ordnung induzieren lässt“. Das französische Team rechnete daraufhin durch, wie sich solche Spin-Filter auf den Tunnelmagnetwiderstand auswirken und konnte die experimentellen Daten reproduzieren.

„Solche komplexen Oxid-Heterostrukturen könnten in der Spintronik zukünftig eine große Rolle spielen“, sagt Valencia. Die Ergebnisse, die nun in Nature Communications veröffentlicht sind, erklären einen wichtigen, bislang noch nicht beachteten Prozess und helfen damit beim Design von Tunnelbarrieren mit den gewünschten Eigenschaften.

Publikation in Nature Communications: „Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping” Doi: 10.1038/ncomms7306

Weitere Informationen:

Dr. Sergio Valencia Molina
Materialien für grüne Spintronik
Helmholtz-Zentrum Berlin für Materialien und Energie
Tel.: +49 (0)30-8062-15619
sergio.valencia(at)helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger(at)helmholtz-berlin.de

Außeruniversitäre Forschung Mikrosysteme / Materialien Photonik / Optik

Meldungen dazu

  • Materialsystem mit Josephson-Kopplung © Nature Materials 2021

    Grüne Informationstechnologien: Supraleitung trifft Spintronik

    Ein internationales Team hat ein Materialsystem entworfen, das sich für supraleitende spintronische Anwendungen mit sehr geringem Energiebedarf eignet
  • Nanoring. Bild: HZB

    Neuartiger Schaltprozess für energieeffiziente Datenspeicher

    BESSY-Forscher beobachten magnetischen Schaltprozess mit minimalem Energieaufwand in spintronischen Bauelementen
  • Bild: HZB

    Neues Materialsystem ermöglicht lokale magnetische Monopole

    Kandidat für künftige energieeffiziente Datenspeicher
  • Die Illustration zeigt, wie die Goldatome unter dem Graphen sitzen. Bild: HZB

    Erkenntnisse auf dem Gebiet der Spintronik

    Helmholtz-Forscher entwickeln neue Materialsysteme für Datenspeicher
  • Die Skizze zeigt den Aufbau der beiden Metalloxidschichten. Die interessanten neuen Eigenschaften zeigen sich genau an der Grenzfläche. Bild: M.Bibes

    Sandwiches aus Metalloxiden

    BESSY II: Wie sich Eigenschaften der Grenzflächen manipulieren lassen
  • Ferromagnetischer FeRh-Film auf ferroelastischem BTO. Grafik: HZB

    Neue Optionen für Spintronik-Bauteile

    Am HZB gelingt Umschalten zwischen magnetischen Zuständen mit weniger Energieaufwand
  • XMCD-PEEM Bilder zeigen, wie eine elektrische Spannung die magnetische Ordnung verändert. Ohne äußeres, elektrisches Feld (0 V) dominiert die ferromagnetische Ordnung (blaue und rote Punkte). Mit einem äußeren elektrischen Feld (50 V) ist die Probe a. Bilder: HZB

    Magnetischer Schalter mit hohem Anwendungspotenzial

    HZB-Forscher entwickeln Materialsystem, dessen magnetische Ordnung kontrollierbar ist
  • Bild: HZB

    In Zukunft wird "multiferroisch" schnell gespeichert

    HZB-Wissenschaftler entdecken, wie eine Substanz bei Raumtemperatur ungewöhnliche Eigenschaften entwickelt und sich damit für eine schnelle Datenspeicherung eignet.
  • HZB-Forscher steuern Elektronen-Spin

    Deutsch-französisches Projekt auf dem Weg zu besseren Arbeitsspeichern

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social Media
  • Kontakt
  • Newsletter
Zukunftsort Charlottenburg Logo