• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • CHIC Logo
  • Aktuelles
    • News / Termine
    • Newsletter
    • CHIC auf LinkedIn
  • Firmenverzeichnis
  • Arbeitswelten
  • Gesundheits­netzwerk
  • Campus Charlottenburg
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Aktuelles

  • News / Termine
  • Newsletter
  • CHIC auf LinkedIn
  • Charlottenburg
  • Aktuelles
07. Februar 2018

Streitfrage in der Festkörperphysik nach 40 Jahren entschieden

BESSY-Forscher entschlüsseln Anomalien in der Leitfähigkeit von Samariumhexaborid

Bild: HZB
Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfläche werden Elektronen emittiert, die mit ARPES gemessen werden. Links beträgt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten lässt sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfläche leitend. Bild: HZB

Ein internationales Team um Prof. Oliver Rader hat an BESSY II gezeigt, dass Samariumhexaborid kein topologischer Isolator ist. Durch einen Quanteneffekt wird dieses metallische Material bei sehr tiefen Temperaturen zu einem Kondo-Isolator, zeigt aber dennoch eine Restleitfähigkeit. Theoretische und erste experimentelle Arbeiten hatten zuvor darauf hingedeutet, dass dies auf einen topologischer Isolator schließen lässt. Das Team hat nun in Nature Communications eine überzeugende alternative Erklärung vorgestellt.

Samariumhexaborid (SmB6) ist ein dunkler Feststoff, der bei Raumtemperatur metallisch ist. Dabei gehört Samarium zu den Lanthaniden, einer Gruppe von Elementen mit mehreren Elektronen, die auf lokalisierten, sogenannten f-Orbitalen sitzen, und stark miteinander wechselwirken. Je tiefer die Temperaturen sinken, desto stärker zeigen sich diese Wechselwirkungen. Unterhalb der sogenannten Kondo-Temperatur wird SmB6 zu einem so genannten Kondo-Isolator, benannt nach Jun Kondo, der als erster diesen Quanteneffekt erklären konnte.

Nahe dem absoluten Nullpunkt: Restleitfähigkeit trotz Kondo-Effekt

Nun haben vor etwa 40 Jahren Physiker beobachtet, dass SmB6 bei tiefen Temperaturen unter 4 Kelvin noch eine Restleitfähigkeit behält, deren Ursache bis heute ungeklärt blieb. Nach der Entdeckung der Materialklasse der topologischen Isolatoren vor rund zwölf Jahren wurden Hypothesen laut, dass SmB6 sowohl ein Kondo-Isolator als auch ein topologischer Isolator sein könnte - dies würde die Anomalie in der Leitfähigkeit sehr grundlegend erklären. Tatsächlich deuteten erste Experimente darauf hin.

Nun an BESSY II: Präzise Vermessung der Energiebänder

Nun konnte ein internationales Team um Prof. Oliver Rader besonders gute Proben von SmB6 an BESSY II detailliert untersuchen. Die Proben von Kooperationspartnern aus der Ukraine wurden entlang bestimmter Kristallebenen gespalten und mit Hilfe der weltweit einmaligen höchstauflösenden Apparatur für Photoemissionsspektroskopie ARPES 13 an BESSY II untersucht. Dabei konnten die Physiker die nötigen niedrigen Temperaturen bis hinunter zu 1 Kelvin erreichen und die Energieniveaus der unterschiedlichen Elektronenbänder bezogen auf die Geometrie des Kristalls sehr genau vermessen.

Analyse der Messdaten zeigt: Kein topologischer Isolator

Ihre Messungen bestätigten zwar den Befund von beweglichen Elektronen an der Oberfläche. Sie belegten aber gleichzeitig, dass sich die Elektronen aufgrund der beobachteten geraden Zahl von Bandüberkreuzungen nicht in topologischen Oberflächenzuständen befinden.

Sondern: Lokale Verschiebung der Bandlücken erklärt Restleitfähigkeit

In den folgenden Experimenten suchten die Forscher intensiv nach einer alternativen Erklärung für die Leitfähigkeit, die inzwischen tatsächlich an der Oberfläche nachgewiesen worden war. „Wir konnten zeigen, dass sich die Lücke zwischen den erlaubten Energieniveaus der Elektronen, die sich durch den Kondo-Effekt auftut, an der Oberfläche ein klein wenig verschoben wird. Deshalb kann die Probe genau dort leitfähig sein. Damit ist aber auch klar, dass die besondere Oberflächenleitfähigkeit nicht von topologischen Eigenschaften verursacht wird“, erklärt Dr. Emile Rienks, der die Experimente zusammen mit dem Doktoranden Peter Hlawenka (HZB und Universität Potsdam) durchgeführt hat.

Ausblick: Grüne Spintronik/Energieffiziente IT

Die Forschung an Topologischen Isolatoren und anderen Materialien, die starke quantenphysikalische Effekte zeigen, könnte zu neuen Bauelementen für eine energieeffiziente Informationstechnologie führen. Informationen könnten mit minimalem Energieeinsatz verarbeitet und gespeichert werden, wenn man die Physik dieser Materialien noch besser verstehen und damit auch kontrollieren kann.

Zur Publikation in Nature Communication (2018):Samarium hexaboride is a trivial surface conductor, P. Hlawenka, K. Siemensmeyer, E. Weschke, A. Varykhalov, J. Sánchez-Barriga, N.Y. Shitsevalova, A.V. Dukhnenko, V.B. Filipov, S. Gabáni, K. Flachbart, O. Rader & E.D.L. Rienks DOI: 10.1038/s41467-018-02908-7

Kontakt:

Helmholtz-Zentrum Berlin für Materialien und Energie

Dr. Emile Rienks
ARPES One-Cube
Tel.: (030) 8062-14913
E-Mail: emile.rienks(at)helmholtz-berlin.de

apl. Prof. Dr. Oliver Rader
Abteilung Materialien für grüne Spintronik
Tel.: (030) 8062-12950
E-Mail: rader@helmholtz-berlin.de

Außeruniversitäre Forschung Mikrosysteme / Materialien

Meldungen dazu

  • Symbolische Illustration einer Graphenschicht auf einem Mikrochip © Dall-E/arö

    Heterostrukturen für die Spintronik

    Experimente an BESSY II zeigen zwei sich gegenseitig verstärkende Quanteneffekte in Heterostrukturen aus Graphen-Kobalt-Iridium
  • Neuer magnetischer Splittingeffekt an BESSY II entdeckt

    Forschungsgruppe beobachtet die Entstehung von Fermi-Bögen durch magnetische Aufspaltung in einem Antiferromagneten
  • Elektronische Struktur von Antimon © HZB/Nature Communication Physics (2021)

    Topologische Materialien für die ultraschnelle Spintronik

    Neue Einblicke in die ultraschnelle Anregung und Reaktion von Topologischen Zuständen der Materie auf Femtosekunden-Laseranregung
  • Bild: HZB

    Neuer Phasenübergang in topologischen Isolatoren entdeckt

    Materialforscher untersuchen Halbleiter mit spannenden Eigenschaften
  • Die Skizze zeigt den Aufbau der beiden Metalloxidschichten. Die interessanten neuen Eigenschaften zeigen sich genau an der Grenzfläche. Bild: M.Bibes

    Sandwiches aus Metalloxiden

    BESSY II: Wie sich Eigenschaften der Grenzflächen manipulieren lassen
  • Experimentelle Daten zum „Dirac-Kegel“. Bild: HZB

    Warping in Topologischen Isolatoren

    HZB-Physiker untersuchten die Bewegungsrichtung von Elektronen und deren Einfluss auf Geschwindigkeit und Verluste beim Stromtransport
  • Hoffnungsträger der Computertechnologie

    HZB Wissenschaftler weisen Stabilität Topologischer Isolatoren nach

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social Media
  • Kontakt
  • Newsletter
Zukunftsort Charlottenburg Logo