• Skip to Management
  • Skip to Main menu
  • Skip to Page content
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • CHIC Logo
  • News / Events
    • Overview
    • CHIC on LinkedIn
  • Company Directory
  • Working Environments
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News / Events

  • Overview
  • CHIC on LinkedIn
  • Charlottenburg
  • News / Events
21. December 2018

Looking at molecules from two sides with table-top femtosecond soft-X-rays

MBI scientists demonstrate new analytical method for organic molecules in aqueous solution

Figure: MBI
Liquid flatjet (solvated urea) illuminated by a broadband soft X-ray pulse obtained by high-order harmonic generation. The insets show the steady-state absorption of Urea at the C and N K-edges extracted from the measurements. Figure: MBI

X-ray spectroscopy provides direct access into the nature of chemical bonds, from which the outcome of chemical reactions can be understood. For this, intense activities both at x-ray source development and implementation of new measurement methods is pursued by key research labs. Researchers at the MBI have now successfully combined a table-top laser-based extreme high-order harmonic source for short-pulse soft-x-ray absorption spectroscopy in the water window with novel flatjet technology. They are the first to demonstrate the simultaneous probing of carbon and nitrogen atoms in organic molecules in aqueous solution.

X-ray absorption spectroscopy (XAS) monitors unoccupied electronic orbitals with element specificity, from which the electronic structure can be derived. For the majority of organic molecules the soft-X-ray spectral region (100-1000 eV) is relevant, as K-edge transitions of low-Z elements (C, N, and O), and the L-edges of 3d metals are found there. XAS is typically performed at large scale facilities, such as storage rings or free-electron lasers. Table-top laser-based sources have until now only been sparsely used to probe pure materials, e.g., metals and organic films. So far, measurements of the carbon or nitrogen K-edges of organic molecules in dilute aqueous solution have not been reported.

The research team at the MBI has now developed a bright source of femtosecond soft X-ray pulses, making use of the extreme high-order harmonic generation process. Long-wavelength (1.8 µm) driver pulses generated with an amplified Ti:sapphire laser system were used to generate high-order harmonics well above the conventional spectral range, i.e., now extending up to 450 eV. They have combined this source with liquid flatjet technology fully functioning under vacuum conditions. Steady-state absorption spectra of organic molecules and inorganic salts in a thin (~ 1 µm) sheet of aqueous solution can now be measured, throughout the so-called water window region between 200-540 eV (see Fig. 1). In particular, this technique enables the simultaneous local probing at both carbon and nitrogen sites within the molecules. With this the research team demonstrates the feasibility of following multiple sites within molecular systems, with the potential of probing possible correlations between these sites upon molecular rearrangements.

This investigation represents a major step towards the systematic investigation of ultrafast rearrangements of solution phase molecular systems with femtosecond soft X-ray spectroscopy. New insights into ultrafast charge transport processes and photo-induced reactions in chemistry and biology are envisaged to become accessible.

Original publication:
Carlo Kleine, Maria Ekimova, Gildas Goldsztejn, Sebastian Raabe, Christian Strüber, Jan Ludwig, Suresh Yarlagadda, Stefan Eisebitt, Marc J. J. Vrakking, Thomas Elsaesser,
Erik T. J. Nibbering, and Arnaud Rouzée
"Soft X-ray Absorption Spectroscopy of Aqueous Solutions Using a Table-Top Femtosecond Soft X-ray Source"
Journal of Physical Chemistry Letters, 14 December 2018 (online), pubs.acs.org/doi/10.1021/acs.jpclett.8b03420
 

More information:

Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI)

Dr. Arnaud Rouzée
Tel.: 030 6392-1240
Email: rouzee(at)mbi-berlin.de

Dr. Erik T. J. Nibbering
Tel.: 030 6392-1477
Email: nibberin(at)mbi-berlin.de

www.mbi-berlin.de

Analytics Photonics / Optics Research

Related News

  • Fig. 1: Förster cycle of an amine photoacid © MBI

    Insights into photoacid electronic structure

    Using ultrafast X-ray spectroscopy, the electronic charge distributions of photoacids could be studied at BESSY II
  • Table-top optical driver © MBI

    MBI researchers achieve breakthrough in the generation of ultrashort X-ray pulses

    High-flux table-top source for femtosecond hard X-ray pulses
  • X-ray snapshots of reacting acids and bases

    Erik T. J. Nibbering receives an ERC Advanced Grant for groundbreaking basic research
  • Figure 1 © MBI

    Water makes the proton shake

    MBI Scientists describe ultrafast motions and fleeting geometries in proton hydration

Related Institutions

  • Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (MBI)
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail
  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media
  • Contact
Zukunftsort Charlottenburg Logo