• Skip to Management
  • Skip to Main menu
  • Skip to Page content
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • CHIC Logo
  • News / Events
    • Overview
    • CHIC on LinkedIn
  • Company Directory
  • Working Environments
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News / Events

  • Overview
  • CHIC on LinkedIn
  • Charlottenburg
  • News / Events
26. March 2021

New insights into the structure of organic-inorganic hybrid perovskites

Team at HZB has analysed structural data of photovoltaic materials with a novel model

crystal structure © HZB
3D crystal structure as a function of the cell modulation phase. (grey: Pb, brown: Br, black: C, blue: N; white: H) © HZB

In photovoltaics, organic-inorganic hybrid perovskites have made a rapid career. But many questions about the crystalline structure of this surprisingly complex class of materials remain unanswered. Now, a team at HZB has used four-dimensional modelling to interpret structural data of methylammonium lead bromide (MAPbBr3), identifying incommensurable superstructures and modulations of the predominant structure. The study is published in the ACS Journal of Physical Chemistry Letters and was selected by the editors as an Editor's Choice.

Organic-inorganic hybrid perovskites have been intensively investigated for use in solar cells for about ten years. Thin films of such perovskites are inexpensive and already achieve high efficiencies. In addition, they can be perfectly combined with common solar cell materials such as silicon to form tandem cells. At the beginning of 2020, an HZB team was able to achieve a world record efficiency of 29.15 % with a tandem cell made of perovskite and silicon.

But despite the most intensive research, it has not yet been possible to precisely elucidate the crystal structures with their diverse modulations and superstructures as a function of temperature, even for the best-known perovskite compounds such as methylammonium and formamidinium lead halide. 

Now, a team at HZB has analysed structural data of methylammonium lead bromide (MAPbBr3) with a novel model. Postdoc Dr. Dennis Wiedemann used a model that takes a fourth dimension into account in addition to the three spatial dimensions. The structural data were measured at a temperature of 150 Kelvin at the University of Columbia.

"The problem in these hybrid perovskites is the fact that the different modifications do not differ significantly in energy, so that even small temperature differences are sufficient to trigger phase transitions," explains Dr. Joachim Breternitz, co-author of the study. The data on the crystal structure therefore show an average value over many elementary cells, so that modulations and superstructures are not always recognisable. The new model explains the incommensurable superstructures observed in MAPbBr3 in a small temperature window around 150 K, which do not have the same periodicity as the crystal lattice. This complex structure comes from tilts and shifts in the crystal structure. "The new model will also provide more detailed insights into the modulated structures of other perovskite compounds," says Breternitz.
 

Publication

J. Phys. Chem. Lett. (2021): Bromide Hybrid Perovskites at Full Tilt: Structure and Symmetry Relations of the Incommensurately Modulated Phase of Methylammonium Lead, MAPbBr3
Dennis Wiedemann, Joachim Breternitz, Daniel W. Paley, and Susan Schorr
DOI: 10.1021/acs.jpclett.0c03722

  • Movie: Movie showing the 3D crystal structure as a function of the cell modulation phase. (grey: Pb, brown: Br, black: C, blue: N; white: H)
    MP4 (3.5 MB), Copyright: HZB
     

Contact:

Dr. Joachim Breternitz
Department Structure and Dynamics of Energy Materials
Helmholtz-Zentrum Berlin für Materialien und Energie
Phone: +49 30 8062-42205
Email: joachim.breternitz(at)helmholtz-berlin.de

 

Press release HZB, 22 March 2021

Research Microsystems / Materials Renewable Energies

Related News

  • cluster facility HZB,© B. Stannowski / HZB

    HZB cooperates with solar module manufacturer Meyer Burger

    On the way to mass production: perovskite silicon tandem cells
  • Figure: ARPES data for various photon energies © HZB

    Team at BESSY II disproves hypotheses about perovskite solar cells

    The findings enable better approaches for the targeted optimisation of this class of materials
  • Tandem solar cell HySPRINT Lab © Amran Al-Ashouri/HZB

    From Lab to Fab: World Record Solar Cell Goes from Lab to Industry

    Q CELLS and Helmholtz-Zentrum Berlin achieve record efficiency of 28.7% for 2-terminal perovskite-silicon tandem solar cell
  • Tandem solar cell © Silvia Mariotti / HZB

    Good prospects for the commercialisation of perovskite tandem solar cells

    Research teams from HZB and ISFH have combined PERC/POLO silicon cells, which are widely used on the market, with perovskite cells for the first time and estimate the efficienciy at 29.5%
  • Tag cloud Perovskite research © HZB

    A Wiki for Perovskite Solar Cell Research

    An international team of experts has designed an open source database to systematically record findings on perovskite semiconductors
  • world record cell HZB. © Amran Al-Ashouri /HZB

    Another world record for HZB perovskite silicon tandem solar cells

    Almost 30 % efficiency for next-generation tandem solar cells
  • perovskite layer, HZB Adlershof Berlin, © M. Künsting/HZB

    HZB researchers provide new insights into lead-free perovskite solar cells

    How fluoride additives improve quality
  • Schematic: Coating with material ink © Jinzhao Li / HZB

    The perfect recipe for efficient perovskite solar cells

    HZB team improved the composition of material inks for the simple and cost-effective production of solar cells
  • Tandem solar cell © Eike Köhnen/HZB

    Perovskite/silicon tandem solar cells on the threshold of 30% efficiency

    HZB team was able to improve the charge carrier transport and the stability of the solar cells
  • Structural model of highly porous a-Si:H © Eike Gericke/HZB

    Order in the disorder

    HZB team discovered density fluctuations in amorphous silicon
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail
  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media
  • Contact
Zukunftsort Charlottenburg Logo