• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • CHIC Logo
  • Aktuelles
    • News / Termine
    • Newsletter
    • CHIC auf LinkedIn
  • Firmenverzeichnis
  • Arbeitswelten
  • Gesundheits­netzwerk
  • Campus Charlottenburg
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Aktuelles

  • News / Termine
  • Newsletter
  • CHIC auf LinkedIn
  • Charlottenburg
  • Aktuelles
12. Februar 2015

Der Tanz der Nanowirbel

HZB-Forscher machen Bewegungsmuster sogenannter Skyrmionen sichtbar

Grafik: Johannes Gutenberg-Universität Mainz
In der Mitte einer dünnen magnetischen Schicht befindet sich ein Wirbel. Ein kurzer Strompuls durch einen Nanodraht lenkt den magnetischen Wirbel (Skyrmion), aus seiner Ruhelage aus. Auf einer Spiralbahn bewegt es sich zurück in seine Ausgangsposition. Dies lässt sich mit Hilfe der Röntgenholografie beobachten. Die spiralförmige Bahn und das Skyrmion sind schematisch oberhalb der Struktur dargestellt. Grafik: Johannes Gutenberg-Universität Mainz

Mit Hilfe der Röntgenholografie gelang es einem Forscherteam, die Bewegungsmuster sogenannter Skyrmionen sichtbar zu machen. Dabei stießen die Forscher auf eine neue Erkenntnis: Die Nanowirbel besitzen eine Masse. Die Arbeit ist am 02. Februar 2015 in „Nature Physics“ erschienen.

Das Phänomen ist bekannt: Wenn ein Kreisel angeschubst wird oder auf einer geneigten Fläche rotiert, bewegt er sich meist nicht geradlinig vorwärts, sondern beschreibt kleine Bögen. Forschern der TU Berlin und des HZB sowie der Universität Mainz ist es zusammen mit Forschungsteams aus den Niederlanden und der Schweiz nun gelungen, solche Bewegungsmuster auch in einem magnetischen Schichtsystem sichtbar zu machen – und zwar in Form von kleinen magnetischen Nanowirbeln. Dabei stießen sie auf einen neuen Befund: Die Nanowirbel besitzen eine Masse.

Wirbel von 100 Nanometern Durchmesser

„Die magnetischen Nanowirbel können wir mit Hilfe von Magnetfeldern gezielt erzeugen und dann ‚anschubsen‘, sodass sie aus ihrer Gleichgewichtslage herausgelenkt werden“, erklärt Dr. Felix Büttner, der diese Forschungen in seiner Doktorarbeit vorangetrieben hat. „Wir konnten dann sehr genau verfolgen, auf welchem Weg diese Skyrmionen, wie diese besonderen Nanowirbel genannt werden, sich in ihre Ruhelage zurückbewegen“, so Büttner weiter.

Die Wirbel entstehen in dünnen magnetischen Schichtsystemen, in denen abwechselnd Lagen aus einer Kobalt-Bor-Legierung und Platin-Schichten übereinandergestapelt sind. Jede Einzelschicht ist weniger als ein Nanometer dick. Dadurch entstehen besondere magnetische Eigenschaften. Der Durchmesser dieser magnetischen Wirbel ist nicht größer als 100 Nanometer. Das ist etwa ein Tausendstel eines Haardurchmessers.

Holografische Aufnahmen an BESSY II

Mit einer besonderen Technik gelang es den Forschern, die Bewegung der Skyrmionen mit einer Präzision von wenigen Nanometern in Zeitabständen von weniger als einer Nanosekunde aufzunehmen und zu dokumentieren. Ermöglicht wurde dies durch holografische Aufnahmetechniken mittels intensiver Röntgenpulse an der Berliner Synchrotronquelle BESSY II am HZB. Diese holografischen Aufnahmetechniken sind am TU-Fachgebiet „Nanometeroptik und Röntgenstreuung“ von Prof. Dr. Stefan Eisebitt gemeinsam mit dem HZB über Jahre weiterentwickelt worden.

Masse des Wirbels kann nicht Null sein

Was Büttner und seine Mitstreiter in den Röntgenhologrammen sahen, war bemerkenswert: „Ähnlich wie ein angestoßener Kreisel bewegt sich der Nanowirbel nicht geradlinig, sondern auf einer spiralförmigen Bahn“, erklärt Büttner. „Durch den Vergleich unserer Messungen mit Modellrechnungen stellten wir fest, dass sich diese spiralförmige Bewegung nur erklären lässt, wenn das Skyrmion eine Masse besitzt.“

Dies ist ein wichtiger Befund, da die hier beobachteten Nanowirbel nur eine spezielle Art von in der Natur zu findenden Skyrmionen sind. „Skyrmionen wurden in der Vergangenheit vielfach als Teilchen ohne Masse beschrieben“, erläutert Christoforos Moutafis vom Paul Scherrer Institut, der sich schon lange mit der theoretischen Beschreibung solcher Strukturen auseinandersetzt. Daher wird das in dieser Arbeit etablierte „Konzept“ von Masse auch zum Verständnis dieser Teilchen beitragen, wie die Forscher in der renommierten Fachzeitschrift „Nature Physics“ darlegen.

Konkrete Anwendungen in der Datenverarbeitung

Speziell diese magnetischen Nanowirbel in dünnen magnetischen Schichten könnten auch für konkrete Anwendungen in Frage kommen: Sie werden bereits heute als alternative Informationsträger in der Datenspeicherung und -verarbeitung diskutiert. Forscher vermuten, dass sich aufgrund ihrer „Wirbeleigenschaft“ Bits, also Informationseinheiten, auf kleinerem Raum und deutlich stabiler als bisher speichern und bewegen lassen. Möglicherweise können nun die neuen Einsichten in das Verhalten der Skyrmionen dazu beitragen, solche neuartigen Konzepte für die Informationsverarbeitung zu verwirklichen.

Dynamics and inertia of skyrmionic spin structures
Felix Büttner, C. Moutafis, M. Schneider, B. Krüger, C. M. Günther, J. Geilhufe, C. v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C. A. F. Vaz, J. H. Franken, H. J. M. Swagten, M. Kläui and S. Eisebitt
Nature Physics , 02. Feb. 2015 (Advanced Online Publication), DOI:10.1038/nphys3234

Weitere Informationen:

Prof. Dr. Stefan Eisebitt
Forschergruppe Funktionale Nanomaterialien
Helmholtz-Zentrum Berlin für Materialien und Energie
Tel.: 030 314-22258, 030 314-25496
E-Mail: stefan.eisebitt(at)helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
E-Mail: antonia.roetger(at)helmholtz-berlin.de

Gemeinsame Presseinfo der TU Berlin und des HZB

Außeruniversitäre Forschung Mikrosysteme / Materialien Photonik / Optik

Meldungen dazu

  • Magnetisierung Skyrmionenwirbel. Bild: MBI

    Licht verwirbelt Magnetisierung

    Laserlichtpulse ermöglichen schnellere Erzeugung von Skyrmionen in Magneten
  • Racetrack-Draht. MBI Eisebitt. Grafik: Moritz Eisebitt

    MBI und MIT forschen an der Zukunft der Festplatte

    Künftig dreidimensionale Speicherverfahren
  • Stefan Eisebitt am Max-Born-Institut. Bild: © Adlershof Journal

    Filme aus der Nanowelt

    Stefan Eisebitt untersucht mit ultraschnellen Lichtpulsen, wie sich Magnetisierung auslöschen oder kontrolliert umkehren lässt
  • Fotonachweis: J. Geilhufe/HZB

    BESSY II: „Schnappschüsse“ von dynamischen Prozessen in unerreichter Auflösung

    Neues holografisches Verfahren bildstabilisierte Röntgenkamera
  • Bild: © HZB

    Schnellster Film der Welt aufgenommen

    Wissenschaftler entwickeln eine Methode, um Nanostrukturen zu filmen
  • Professor Dr. Stefan Eisebitt

    Der TU-Professor leitet die Forschergruppe „Funktionale Nanomaterialien“ am Helmholtz-Zentrum Berlin für Materialien und Energie

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social Media
  • Kontakt
  • Newsletter
Zukunftsort Charlottenburg Logo