• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • CHIC Logo
  • Aktuelles
    • News / Termine
    • Newsletter
    • CHIC auf LinkedIn
  • Firmenverzeichnis
  • Arbeitswelten
  • Gesundheits­netzwerk
  • Campus Charlottenburg
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Aktuelles

  • News / Termine
  • Newsletter
  • CHIC auf LinkedIn
  • Charlottenburg
  • Aktuelles
02. August 2024

Grüner Wasserstoff: „Künstliches Blatt“ wird unter Druck besser

Unter einem Druck von 6-8 bar lässt sich die Effizienz von photoelektrochemischen Zellen für die Wasserstoffproduktion aus Sonnenlicht deutlich steigern

Gasblasen an einer PEC-Zelle © Feng Liang /HZB
Die Effizienz einer PEC-Zelle hängt von vielen Faktoren ab, unter anderem von der Größe der Gasblasen. © Feng Liang /HZB

Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.

Manche bezeichnen photoelektrochemische Zellen (PEC-Zellen) auch als „künstliches Blatt“ – denn ähnlich wie bei der Photosynthese in grünen Blättern und Algen, wo ein komplexes Molekül (Photosystem II) das Sonnenlicht nutzt, um Wasser aufzuspalten, erfüllen in PEC-Zellen anorganische, eigens entwickelte Photoelektroden diese Aufgabe.

Verluste identifizieren und minimieren

PEC-Zellen sind inzwischen beeindruckend effizient: Die leistungsstärksten PEC-Zellen erreichen bereits Wirkungsgrade von bis zu 19 Prozent. Bei solch hohen Wirkungsgraden spielen die Verluste durch Blasenbildung eine wichtige Rolle: Blasen streuen das Licht und verhindern eine optimale Ausleuchtung der Elektrode. Außerdem können Blasen den Kontakt des Elektrolyten mit der Elektrodenoberfläche verhindern und so zu einer elektrochemischen Deaktivierung führen. Um diese Verluste zu minimieren, wäre es hilfreich, die Blasengröße zu verringern, indem die Anlage bei höherem Druck betrieben wird. Bislang wurden jedoch alle PEC-Anlagen bei atmosphärischem Druck (1 bar) betrieben.

PEC-Zellen unter Druck

Ein Team des Instituts für Solare Brennstoffe am HZB hat nun die Wasserspaltung bei erhöhtem Druck unter PEC-relevanten Bedingungen untersucht. Sie setzten PEC-Durchflusszellen auf einen Druck zwischen 1 und 10 bar und zeichneten verschiedene Parameter während der Elektrolyse auf.

Zusätzlich entwickelten sie ein multiphysikalisches Modell des PEC-Prozesses und glichen es mit den experimentellen Daten bei normalem und erhöhtem Druck ab. Dieses Modell ermöglicht es nun, mit den Parametern zu spielen und die entscheidenden Hebel zu identifizieren. „Wir haben zum Beispiel untersucht, wie sich der Betriebsdruck auf die Größe der Gasblasen und ihr Verhalten an den Elektroden auswirkt“, sagt Dr. Feng Liang, Erstautor der Arbeit, die nun in Nature Communications erschienen ist.

Energieverluste lassen sich halbieren

Die Analyse zeigt, dass eine Erhöhung des Betriebsdrucks auf 8 bar den Gesamtenergieverlust halbiert. Dies könnte den Gesamtwirkungsgrad deutlich steigern. „Die optischen Streuverluste können bei diesem Druck fast vollständig vermieden werden“, erklärt Liang. „Wir konnten auch eine deutliche Verringerung der Produktübergänge feststellen, insbesondere des Sauerstofftransfers auf die Gegenelektrode.“

Optimaler Betriebsdruck

Bei höheren Drücken gibt es jedoch keinen Vorteil, so dass das Team 6-8 bar als optimalen Betriebsdruckbereich für PEC-Elektrolyseure vorschlägt. „Diese Erkenntnisse, insbesondere das Multiphysik-Modell, lassen sich auf andere Systeme übertragen und werden uns helfen, die Effizienz von elektrochemischen und photokatalytischen Anlagen zu erhöhen“, sagt Prof. Dr. Roel van de Krol, der das Institut für Solare Brennstoffe am HZB leitet.

Hinweis: Die Arbeiten wurden durch das Helmholtz-Innopool-Projekt „Solar H2: Highly Pure and Compressed“ gefördert. Die Autoren bedanken sich herzlich bei Christian Höhn, Markus Bürger, Lars Drescher und Torsten Wagner für ihre unermüdlichen Beiträge zum Bau dieser Hochdruck-Durchflusszelle.

Publikation:

Nature Communications (2024): Assessing elevated pressure impact on photoelectrochemical water splitting via multiphysics modeling
Feng Liang, Roel van de Krol, & Fatwa F. Abdi
DOI: 10.1038/s41467-024-49273-2

Kontakt:

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)
Institut Solare Brennstoffe
CE-IF-office(at)helmholtz-berlin.de

Prof. Dr. Roel van de Krol
+49 30 8062-43035
E-Mail

Dr. Antonia Rötger
Pressestelle
+49 30 8062-43733
E-Mail

 

Pressemitteilung HZB vom 31.07.2024

Außeruniversitäre Forschung Erneuerbare Energien Mikrosysteme / Materialien

Meldungen dazu

  • Skizze zum Mehrwert, den Forschung und Entwicklung bieten, damit Forschungsgelder in aussichtsreiche und wichtige Projekte investiert werden können. © 10.1016/j.joule.2024.07.005

    Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse

    Internationales Expertenteam vergleicht verschiedene Ansätze und warnt vor einem Hype
  • Abbildung Liquid-Jet-Methode © Robert Seidel/HZB

    Forschende untersuchen mit Röntgenlicht von BESSY II chemische Reaktionen an Grenzflächen

    Oberflächen von Katalysatorpartikeln in wässrigen Lösungen analysiert
  • Illustration grüner Wasserstoff © Dr. Ziliang Chen

    Innovative Katalysatoren für grünen Wasserstoff

    Experten des CatLab am HZB und der TU Berlin geben einen Überblick über den aktuellen Wissensstand und einen Ausblick auf die zukünftige Forschung
  • Badewanne

    Was könnte künstliche Photosynthese beitragen, um die globale Erwärmung zu begrenzen?

    Forscher veröffentlichen Berechnungen, um CO2 aus der Atmosphäre zu entfernen, und plädieren für drastische Reduzierung von Emissionen
  • Foto: TU Delft

    Das Beste aus zwei Welten: HZB gelingt Durchbruch bei Solarer Wasserstoffproduktion

    Einfache Solarzelle speichert fast fünf Prozent Solarenergie

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social Media
  • Kontakt
  • Newsletter
Zukunftsort Charlottenburg Logo