• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • CHIC Logo
  • Aktuelles
    • News / Termine
    • Newsletter
    • CHIC auf LinkedIn
  • Firmenverzeichnis
  • Arbeitswelten
  • Gesundheits­netzwerk
  • Campus Charlottenburg
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Aktuelles

  • News / Termine
  • Newsletter
  • CHIC auf LinkedIn
  • Charlottenburg
  • Aktuelles
07. Oktober 2022

Grüner Wasserstoff: Raschere Fortschritte durch moderne Röntgenquellen

An BESSY II in Adlershof wird die Entwicklung von passenden Elektrokatalysatoren vorangetrieben

Manganoxide © M. Risch/HZB
Manganoxide kommen in verschiedenen strukturellen Varianten vor. Das macht sie zu einer spannenden Materialklasse für Elektrokatalysatoren. © M. Risch/HZB

Mit der Elektrokatalyse von Wasser lässt sich elektrische Energie aus Sonne oder Wind zur Erzeugung von grünem Wasserstoff nutzen und so speichern. Ein Überblicksbeitrag in der Fachzeitschrift Angewandte Chemie zeigt, wie moderne Röntgenquellen wie BESSY II die Entwicklung von passenden Elektrokatalysatoren vorantreiben können. Insbesondere lassen sich mit Hilfe von Röntgenabsorptionsspektroskopie die aktiven Zustände von katalytisch aktiven Materialien für die Sauerstoffentwicklungsreaktion bestimmen. Dies ist ein wichtiger Beitrag, um effiziente Katalysatoren aus günstigen und weit verbreiteten Elementen zu entwickeln.

 

Grüner Wasserstoff ist ein Energieträger mit Zukunft. Er wird durch die elektrolytische Aufspaltung von Wasser mit Energie aus Wind oder Sonne gewonnen und speichert diese Energie in chemischer Form. Damit die Aufspaltung von Wassermolekülen leichter (und mit weniger Energieeinsatz) gelingt, sind die Elektroden mit katalytisch aktiven Materialien beschichtet. Dr. Marcel Risch untersucht mit seinem Team in der Nachwuchsgruppe "Gestaltung des Sauerstoffentwicklungsmechanismus" die Sauerstoffentwicklung bei der Elektrokatalyse von Wasser. Denn vor allem die Sauerstoffentwicklung muss für eine wirtschaftliche Wasserstoffproduktion noch effizienter ablaufen.

Manganoxide als Multitalente
Eine spannende Materialklasse für Elektrokatalysatoren sind Manganoxide, die in vielen verschiedenen strukturellen Varianten vorkommen. „Ein entscheidendes Kriterium für die Eignung als Elektrokatalysator ist die Oxidationszahl des Materials und wie sie sich im Lauf der Reaktion verändert“, erläutert Risch. Bei den Manganoxiden gibt es auch hierbei eine große Vielfalt.

Röntgen-Methoden
Informationen über die Oxidationszustände bringt die Röntgenabsorptionsspektroskopie (XAS): Röntgenquanten mit passender Energie regen dabei Elektronen auf den innersten Schalen an, die diese Quanten absorbieren. Je nach Oxidationszahl kann man diese Absorption bei unterschiedlichen Anregungsenergien beobachten. Das Team um Risch hat eine Elektrolyse-Zelle konstruiert, die XAS-Messungen während der Elektrolyse ermöglicht.

Oxidationszahlen und Veränderungen messen
„Mit der Röntgenabsorptionsspektroskopie können wir nicht nur die Oxdationszahlen ermitteln, sondern auch Korrosionsprozesse oder Phasenveränderungen im Material beobachten“, sagt Risch. Kombiniert mit elektrochemischen Messungen ergibt sich aus den Messdaten damit ein deutlich besseres Verständnis des Materials während der Elektrokatalyse. Die benötigte hohe Intensität der Röntgenstrahlung steht allerdings nur an modernen Synchrotronlichtquellen zur Verfügung. In Berlin betreibt das HZB dafür BESSY II. Weltweit gibt es etwa 50 solcher Lichtquellen für die Forschung.

Zeitskalen erweitern
Risch sieht noch großes Potenzial für die Anwendung von Röntgenabsorptionsspektroskopie, insbesondere was die Zeitskalen der Beobachtung betrifft. Denn typische Messzeiten betragen einige Minuten pro Messung. Elektrokatalytische Reaktionen finden jedoch auf kürzeren Zeitskalen statt. „Wenn wir bei der Elektrokatalyse zuschauen könnten während sie passiert, könnten wir wichtige Details besser verstehen “ , meint Risch. Mit diesem Wissen würden sich preiswerte und umweltfreundliche Katalysatoren rascher entwickeln lassen. Andererseits finden viele „Alterungsprozesse“ binnen Wochen oder Monaten statt. „Wir könnten zum Beispiel in regelmäßigen Abständen die gleiche Probe immer wieder untersuchen, um diese Prozesse zu verstehen“, rät Risch. Damit ließen sich zusätzlich noch langlebigere Elektrokatalysatoren entwickeln.

 

Kontakt:

Dr. Marcel Risch
Helmholtz-Zentrum Berlin für Materialien und Energie
marcel.risch(at)helmholtz-berlin.de

 

 

Pressemitteilung HZB vom 07.10.2022

Außeruniversitäre Forschung Erneuerbare Energien Mikrosysteme / Materialien

Meldungen dazu

  • Skizze zum Mehrwert, den Forschung und Entwicklung bieten, damit Forschungsgelder in aussichtsreiche und wichtige Projekte investiert werden können. © 10.1016/j.joule.2024.07.005

    Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse

    Internationales Expertenteam vergleicht verschiedene Ansätze und warnt vor einem Hype
  • Illustration der solarbetriebenen gekoppelten photoelektrochemischen PEC- und Hydrierungsanlage. Credit: Hassan Tahini, ScienceBrush Design

    Grüner Wasserstoff: Ko-Produktion von wertvollen Chemikalien steigert die Wirtschaftlichkeit

    Studie von HZB und TU Berlin zeigt einen vielversprechenden Ansatz zur Kostensenkung solarer Wasserstofferzeugung
  • Illustration grüner Wasserstoff © Dr. Ziliang Chen

    Innovative Katalysatoren für grünen Wasserstoff

    Experten des CatLab am HZB und der TU Berlin geben einen Überblick über den aktuellen Wissensstand und einen Ausblick auf die zukünftige Forschung
  • Grüner Wasserstoff: Warum werden bestimmte Katalysatoren im Betrieb besser?

    HZB-Team analysierte mineralische Katalysatormaterialien
  • © HZB/Steffi Hlawenka

    Start der Katalyse-Forschungs­plattform CatLab in Adlershof

    Helmholtz-Zentrum Berlin und zwei Max-Planck-Institute wollen Innovations­sprünge in der Wasserstoff-Forschung erreichen
  • Mehr Mittel für Photo­voltaik- und Wasser­stoff-Energie­technologie

    1,9 Mio. EUR Zusatzförderung für Helmholtz Innovation Lab HySPRINT

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social Media
  • Kontakt
  • Newsletter
Zukunftsort Charlottenburg Logo