• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
CHIC Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • CHIC Logo
  • Aktuelles
    • News / Termine
    • Newsletter
    • CHIC auf LinkedIn
  • Firmenverzeichnis
  • Arbeitswelten
  • Gesundheits­netzwerk
  • Campus Charlottenburg
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Aktuelles

  • News / Termine
  • Newsletter
  • CHIC auf LinkedIn
  • Charlottenburg
  • Aktuelles
30. Mai 2017

Trends und Wege zu hocheffizienten Perowskit-Solarzellen

Helmholtz-Forscher geben Überblick über die Material­entwicklung in renommierter Fachzeitschrift

Perowskitmaterialien. Bild: HZB
Die Daten zeigen Bandlücken und Wirkungsgrade von unterschiedlichen Perowskitmaterialien. Dabei sinken die Wirkungsgrade bei großen Bandlücken aufgrund des unerwünschten Entmischungseffekts. Bild: HZB

Perowskit-Solarzellen waren die Überraschung der letzten Jahre. Binnen kürzester Zeit konnte ihr Wirkungsgrad von knapp 10 auf 22 Prozent gesteigert werden. Kein anderes Photovoltaik-Material hat bisher solche rasche Fortschritte verzeichnet. Forschergruppen weltweit widmen sich deshalb der neuen Materialklasse. Eva Unger und Steve Albrecht aus dem Helmholtz-Zentrum Berlin (HZB) haben auf Einladung der renommierten Fachzeitschrift Journal of Materials Chemistry A die Trends in der Materialentwicklung von Perowskithalbleitern der letzten Jahre ausgewertet. Dabei haben sie Chancen und Begrenzungen dieser Halbleiterklasse in Abhängigkeit von ihrem Absorptionsbereich in einem Überblicksartikel zusammengefasst.

Forscher in aller Welt sind von Perowskit(1)-Solarzellen fasziniert. Nicht nur, weil es noch nie zuvor eine derart rasante Steigerung des Wirkungsgrades innerhalb weniger Jahre gegeben hat. Perowskit-Materialien können auch diejenigen Wellenlängen-Bereiche des Lichts in Strom umwandeln, die in Silizium-Solarzellen nur ineffizient genutzt werden. Die Kombination der beiden Materialklassen zu einer Tandem-Solarzelle verspricht daher eine bessere Nutzung des Sonnenlichts und besonders hohe Wirkungsgrade.

Neuer HZB-Schwerpunkt Perowskite

Wie sich Perowskit- und Silizium-Schichten zu Tandemmodulen kombinieren lassen, ist ein bedeutender neuer Forschungsschwerpunkt am Helmholtz Zentrum Berlin. Drei neue Nachwuchsgruppen, geleitet von Dr. Eva Unger, Dr. Antonio Abate und Dr. Steve Albrecht, arbeiten im Rahmen des HySPRINT Innovation Labs an der Entwicklung großflächiger und stabiler Tandemsolarzellen und viele andere Forschergruppen am HZB erforschen grundlegende Eigenschaften dieser Halbleitermaterialien.

Auf Einladung der Fachzeitschrift „Journal of Materials Chemistry A“ haben Unger und Albrecht für die Spezialausgabe „Emerging Young Investigators“ nun einen Übersichtsartikel verfasst, der die Entwicklung der Perowskit-Materialien für verschiedene Materialkompositionen und Bandlücken beschreibt. In diesem Überblicksartikel wurde durch Zusammenstellung verschiedener publizierter experimenteller Datensätze übergreifende Trends dargestellt, die sich unabhängig von individuellen Forschungslaboren abzeichnen und somit durch fundamentale Eigenschaften und Begrenzungen dieser Materialklasse bedingt sind. „Durch das Zusammentragen aller relevanten Daten konnten wir die Steigerung des Wirkungsgrades in den letzten Jahren dokumentieren, aber auch Limitierungen aufzeigen“, sagt Eva Unger.

Vorteil: Variable Bandlücken

Über die chemische Zusammensetzung der Perowskite lässt sich der spektrale Bereich der Lichtabsorption definieren, die, wie die Autoren durch den Vergleich einer Vielzahl von experimentellen Datensätzen zeigen, vor allem durch die Dimension des Kristallgitters bedingt ist. Beispielsweise wirken sich Variationen im Mischungsverhältnis von Halogenelementen wie Brom oder Jod auf die „Bandlücke“ des Materials aus und somit auf den Spektralbereich des absorbierbaren Lichts. Um Siliziumzellen durch eine zusätzliche Perowskitschicht perfekt zu ergänzen, werden Bandlücken von etwa 1.7 eV benötigt, die die Umwandlung des grünen und blauen Spektralbereichs erlauben. Diese Bandlücke kann durch verschiedene Mischungsverhältnisse in Perowskithalbleitern erzielt werden.

Problem: Phasentrennung

Für Materialien mit Bandlücken von mehr als 1.7 eV treten jedoch interessante lichtinduzierte Phänomene auf: sie weisen bei Bestrahlung mit Licht eine Phasentrennung auf, in der sich das Material in Brom-reiche und Iod-reiche Domänen aufteilt. Durch diesen Entmischungseffekt bleibt der Wirkungsgrad derzeit noch deutlich unter dem theoretisch erwarteten Wert (siehe Grafik).

Gute Chancen für Tandemsolarzellen aus Silizium und Perowskit

Daraus ergibt sich die Frage, ob und wie sich der Effekt verstehen und umgehen lässt, schreiben beide Forscher. Für Tandemsolarzellen, die auf Silizium basieren, sind diese Ergebnisse übrigens gute Neuigkeiten: Die bisher bekannten Perowskit-Materialien, die Silizium ideal ergänzen würden, scheinen licht-stabil zu sein und weisen keine lichtinduzierte Phasetrennung auf. Das heißt: nichts spricht dagegen, Perowskit-Silizium-Tandemsolarzellen zu einem hocheffizienten Solarmodul zu entwickeln.

Zur Publikation: J. Mater. Chem. A, 2017, Advance Article
Roadmap and roadblocks for the band gap tunability of metal halide perovskites
E. L. Unger, L. Kegelmann, K. Suchan, D. Sörell, L. Kortec and S. Albrecht. DOI: 10.1039/C7TA00404D

Fußnote (1): Perowskit besitzt eine (kubische) Kristallstruktur der Bauart ABX3. Diese Struktur wurde zuerst in natürlich vorkommenden Mineralien (z.B. CaTiO3) gefunden. Den gleichen Aufbau haben jedoch auch die synthetisch erzeugten organisch-anorganischen Perowskit-Halbleiter. Sie werden für Solarzellen benutzt und bestehen aus organischen CH3NH3-Molekülen (A), metallischen Elementen (B) und Halogenen(X).

 

Mehr Informationen:

Helmholtz-Zentrum für Materialien und Energie

Dr. Eva Unger
Nachwuchsgruppe Hybride Materialien Formierung und Skalierung
Tel.: (030) 8062-41366 / -13116
E-Mail: eva.unger(at)helmholtz-berlin.de

Dr. Steve Albrecht
Nachwuchsgruppe Perowskit Tandemsolarzellen
Tel.: (030) 8062-41334
E-Mail: steve.albrecht(at)helmholtz-berlin.de

Außeruniversitäre Forschung Erneuerbare Energien Mikrosysteme / Materialien

Meldungen dazu

  • Prof. Dr. Eva Unger © HU Berlin

    Ist die Welt noch zu retten?

    Prof. Dr. Eva Unger im „Köpfe der Nachhaltigkeit“-Interview
  • Wortwolke Perowskit-Forschung © HZB

    Ein Wiki für die Perowskit-Solarzellenforschung

    Ein internationales Expertenteam hat eine Open-Source-Datenbank konzipiert, um Erkenntnisse zu Perowskit-Halbleitern systematisch zu erfassen
  • CIGS Tandem scheme

    Dünnschicht-Tandemzelle aus Perowskit- und CIGSe-Halbleitern

    Neue Materialkombination macht die Solarzelle aus dem HZB hauchdünn und extrem effizient
  • Tandem-Solarzelle. Bild: HZB

    Wirkungsgrad von 25,2% für Perowskit-Silizium-Tandem-Solarzelle zertifiziert

    HZB-Forscher stellten Rekord-Zellen auf Fachkonferenz vor
  • Vereinfachter Querschnitt durch eine Perowskit-Solarzelle. Bild: HZB

    Solarzellen müssen gar nicht perfekt sein

    Untersuchungen an BESSY II zeigen, warum selbst „löchrige“ Perowskit-Filme gut funktionieren
  • Bild: Oxford PV

    HZB verstärkt Zusammenarbeit mit Oxford PV

    Gemeinsam entwickeln sie Perowskit-Solarzellen-Technologie bis zur Marktreife
  • Solarzellen. Bild: HZB

    Steve Albrecht erklärt Solarzellen

    Adlershofer Nachwuchs­gruppen­leiter im Helmholtz-Forschungs­podcast
  • Schema des Aufbaus der Tandem-Zelle. Das Licht kommt von unten. Bild: Felix Lang/HZB

    Hybride Solarzelle könnte Rekord-Wirkungsgrad von 30% ermöglichen

    Helmholtz-Forscher schaffen optimale Bandlücke für Perowskit-Silizium-Tandemzelle
  • Tandem-Solarzelle. Bild: S. Albrecht / HZB

    Tandem-Solarzelle mit Rekord-Wirkungsgrad

    Kombination aus Silizium und Perowskit macht Solarzellen kostengünstiger und effizienter

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social Media
  • Kontakt
  • Newsletter
Zukunftsort Charlottenburg Logo